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Abstract. This paper presents four novel techniques for open-vocabulary spoken document retrieval: a method
to detect slots that possibly contain a query feature; a method to estimate occurrence probabilities; a technique that
we call collection-wide probability re-estimation and a weighting scheme which takes advantage of the fact that
long query features are detected more reliably. These four techniques have been evaluated using the TREC-6
spoken document retrieval test collection to determine the improvements in retrieval effectiveness with respect to
a baseline retrieval method. Results show that the retrieval effectiveness can be improved considerably despite the
large number of speech recognition errors.
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1. Introduction

Finding relevant information inspoken documentsis a challenging task for modern multi-
media information systems (Sch¨auble 1997). In the last decade there has been increasing
interest in the development of systems that provide content-based access to spoken infor-
mation such as radio, TV or video material (Glavitsch and Sch¨auble 1992). This interest has
even increased since the initialspoken document retrieval(SDR) track within the TREC-6
conference (Voorhees et al. 1998).

Speech recognitionandinformation retrievaltechniques enable automatic content-based
indexing and efficient retrieval of spoken documents that are relevant to a user’s query.
To approximate the quality of state-of-the-art text retrieval systems when dealing with
information in spoken form, we have to address mainly the following problem.

The main problem when applying speech recognition for SDR is the accuracy of the
recognition output. Automatic speech recognition is a difficult task and accordingly, its
output often contains a considerable number ofrecognition errors. The recognition accuracy
is mainly dependent on (1) the amount and quality of acoustictraining data, (2) the number
and gender of different speakers, (3) the number of units to recognize, and (4) the recording
environment of the speech documents. Moreover, there are no acoustic pauses between
words in continuous speech as opposed to blanks in texts.

Recognition errors usually degrade the effectiveness of a SDR system. Strategies against
this problem are (1) to improve the speech recognition accuracy, which requires a huge
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amount of training data and time, and/or (2) to develop retrieval methods that are more
error-tolerant. In this paper we focus on the second strategy.

Researchers have addressed the problem of SDR in mainly two different ways. One way
is to utilize a (large) vocabulary speech recognizerto convert the speech into text, to which
well-established text retrieval methods can be applied. This approach is taken by several
groups (Jones et al. 1995, Wactlar et al. 1996, Allan et al. 1998, Abberley et al. 1998). Note
that in the TREC-6 SDR trackword-leveltranscripts of the spoken documents were provided
to enable a participation without having to cope with speech recognition. A considerable
drawback of this approach is the fact that the query vocabulary, which is implicitly defined
by the recognition vocabulary, is (a)limited in sizeand (b) has to bespecified and trained
in advance.

An alternative approach is to perform retrieval onphoneme-leveltranscriptions provided
by a phoneme recognizer. Phoneme-recognition based SDR has the advantages that (a) the
recognizer is less expensive with respect to the training effort, and (b)open-vocabulary
retrieval is possible, because the recognition component is not bound to any vocabulary.
Indexing the transcriptions may be accomplished e.g. by extracting phoneme N-grams
(Wechsler and Sch¨auble 1995, Ng and Zue 1997). Alternatively, Brown and colleagues
(1996) present aword spottingtechnique that operates on phone-lattices, which are multi-
hypotheses phonetic transcriptions.

Finally, both word and phoneme recognition based SDR has been investigated in com-
bination (James 1996, Jones et al. 1996, Witbrock and Hauptmann 1997). Results indicate
that combined methods outperform either single approach, however they require larger
recognition effort.

Previous work done at ETH describes a phoneme-recognition based retrieval method
that combines error-tolerantword spottingand a new probabilistic weighting technique for
retrieval (Wechsler and Sch¨auble 1995, Sheridan et al. 1997).

The main contribution of this work is the presentation and evaluation of four novel tech-
niques to improve the effectiveness of phoneme-based spoken document retrieval, thus
enabling open-vocabulary retrieval. These techniques consist of a new method to detect oc-
currences of query features, a new method to estimate occurrence probabilities, acollection-
wide probability re-estimation technique, and feature length weighting.

The paper is structured as follows. In Section 2 we describe a baseline method for spoken
document retrieval and present the four techniques to improve the retrieval effectiveness.
Section 3 contains contextual information about experiments we performed to evaluate the
techniques. Experimental results are presented and discussed in Section 4. We conclude our
findings in Section 5.

2. Retrieval methods

Our approach to SDR is based on aphoneme recognizerwhich initially transforms the
spoken documents intophoneme sequences. On the query side, a pronunciation dictionary
(CMU 1995) serves to translate written query words or phrases into phoneme sequences.
We call these query elementsquery features. In the case where a query word is not in the
dictionary, we use rules to generate the corresponding phoneme sequence (Wasser 1985).
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These phoneme sequences arespottedin the document sequences, and by taking into account
the distribution of the query features in the documents, aRetrieval Status Value(RSV) is
computed for each query-document pair. The RSV is a measure for the estimated relevance
of a document with respect to a query. The spoken documents are presented to the user in
decreasing order of their RSVs.

A phoneme sequence in a spoken document is comparable to a sequence of characters in
a text document. However, there are two main differences to the text case. First, phoneme
sequences do not contain word boundaries since we often do not pause between words in
fluent speech. Thus our retrieval method must be able tolocateindividual occurrences of
query features. We call those occurrencesslots. Second, the sequences are corrupted due to
recognition errors. Thus, an effective retrieval method has to take these errors into account.

Our retrieval method consists of three components: (1) aslot detectionmethod, which
detects possible occurences of query features in the documents, (2) aprobability estimation
method, which estimates the probability that a slot is an utterance of a query feature, and (3)
aweighting and retrieval functionwhich estimates how well the content of a document fits
to the query content. In the following subsection, we describe our baseline retrieval method
and present our novel techniques.

2.1. Baseline retrieval method

Let dj ∈ D be a spoken document in a collection D and letϕi ∈q be an indexing feature of
a queryq. The documents and query features are assumed to be phoneme sequences. We
write

dj =
〈
dj [0], . . . ,dj

[
ldj − 1

]〉
(1)

ϕi =
〈
ϕi [0], . . . , ϕi

[
lϕi − 1

]〉
, (2)

wheredj [k] andϕi [k] denote the (k+ 1)-th phoneme within the sequence. Furthermore,ldj

and lϕi denote the length of the document or query feature, respectively. The lengths are
expressed in number of phonemes. For each query feature we first have to detect possible
slots within the documents of the collection. On the phoneme level, a slot

s= 〈dj [b], . . . ,dj [b+ l − 1]〉 (3)

is a phoneme subsequence within a documentdj whereb denotes the start position andl
the length of the slot. All slots detected to a query featureϕi in a documentdj yield aslot
set S(ϕ i , dj).

The baseline retrieval method employs a trivial slot detection technique. To a given
phoneme sequence of a query feature the technique detects all slots that areidentical
matches. Clearly, this method is not robust against phoneme recognition errors, since every
error may cause a query feature to be missed. However, Mittendorf (1998) shows that this
simple baseline method is surprisingly effective under certain circumstances, for example
if the documents are sufficiently long.
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In the baseline method we assume that each slot detected is a query feature occurrence,
whereas in our novel techniques an occurrence probability is estimated for each slot. In
other words, all slot probabilities are set to one in the baseline method.

Document and query weights for retrieval are determined as follows. We employ the
inner vector product as our basic retrieval function:

RSV(q, dj ) :=
∑
ϕi∈q

ai, j bi , (4)

whereai, j denotes the document weight ofϕi in dj andbi denotes the query weight ofϕi

in q.
For weighting and retrieval we adapted thelnu.ltn retrieval method (Buckley et al. 1994)

for speech. The document weights for the baseline method are defined as

ai, j := 1

(1− α)l̄ +αldj

log(1+ eff(ϕi , dj )) (5)

whereldj denotes the length ofdj , l̄ denotes the average document length in the collection,
andα is the slope (Singhal et al. 1996). We usedα = 0.25 throughout our experiments.
There are three modifications compared to the standardlnudocument weights. First, we use
anexpected feature frequency(eff), which denotes the number of expected occurrences of a
feature in a document. Mittendorf and colleagues (1995) show that the eff can be written
as the sum of slot probabilities:

eff(ϕi , dj ) :=
∑

s∈S(ϕi ,dj )

P(ϕi , s). (6)

The idea behind expected feature frequencies is to allow for the uncertainty concerning the
presence of query features in spoken document retrieval. Slots with higher probabilities
correspond to more reliable hits and should thus get higher weights. Note again that in our
baseline method the expected feature frequency equals the number of slots detected.

The second modification concerns the document weight log(1+ eff(ϕi , dj )) which was
originally (1+ log(ff(ϕi , dj )). This change was necessary to avoid negative weights in the
case 0≤ eff < 1. In the third modification we adjusted pivoted document normalization
(Singhal et al. 1996) by defining the length of a spoken document with the number of
phonemes recognized.

The query weightsbi in (4) are defined as

bi := (1+ log(ff(ϕi ,q))) iecf(ϕi ) (7)

iecf(ϕi ) := 1+ log

(
Cq + 1

ecf(ϕ)+ 1

)
(8)

ecf(ϕi ) :=
∑
dj∈D

eff(ϕi , dj ) (9)

Cq := max
ϕ∈q

(ecf(ϕ)). (10)
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The feature frequencyff(ϕi ,q) denotes the number of occurrences ofϕi , in the query,
whereas theinverse expected collection frequencyiecf(ϕi ) is a collection-wide feature
weight very similar to theinverse document frequency(idf). The iecf is defined in (8) as a
function of theexpected collection frequencyecf (ϕi ), which denotes the expected number
of all occurrences of a feature in the collection (9). The valueCq (10) is a query dependent
constant defined in such a way that iecf(ϕ) ≥ 1 for all ϕ ∈q. The iecf emphasizes query
words that occur less frequently in the collection, where for the most frequent feature of
the query it holds that iecf= 1.

In our model of probabilistic feature occurrences it is theoretically possible to compute
the idf of a feature based on the expecteddocumentfrequency as shown in Mittendorf et al.
(1995). The document frequency denotes the number of documents that contain a certain
feature. However, earlier experiments have shown that the estimation of expected document
frequencies is not robust.

A text query is indexed by transcribing single words and phrases as phoneme sequences.
Single words are transcribed by means of a pronunciation dictionary. For out-of-vocabulary
words, we adapted a rule-based phone translation system (Wasser 1985). Additionally,
pronunciations of consecutive pairs of non stop words are concatenated to phrase phoneme
sequences. Thus, the baseline method also uses phrase features.

2.2. Novel retrieval method

The main problem in retrieval on phonemic output is the fact that the recognition result is
corrupted by a considerable amount of recognition errors. State-of-the art phoneme recog-
nizers still operate with phoneme error rates of at least 25% (Robinson 1994). The phoneme
error rate is the percentage of phoneme substitutions, insertions and deletions with respect
to the reference phoneme sequence. The recognizer we used for this paper has even a
phoneme error rate of 55%. This quite poor performance is related to the heterogeneous
nature of the speech data (various recording environments and multiple speakers), and to
the fact that we did not spend much time for training. Figure 1 shows a sample extract of
the recognition output with the corresponding text. By comparing the phoneme sequence
of the query word “cigarette” (which is /sigBet/ for our phoneme alphabet) to the document
phoneme sequence, one can see that each occurrence is corrupted by various recognition
errors. There is no entire match between the query word and the three occurrences.

In the following, we describe new error-robust methods both for slot detection and prob-
ability estimation, and we investigate the feasibility of taking the length of query features
into account.

Figure 1. An extract of a document phoneme sequence, corrupted by recognition errors.
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Slot detection. The new slot detection method accounts for all three types of phoneme
errors (substitution, insertion, deletion). It can be divided into two steps. In a first step, each
document position is scored according to its quality of being a slot beginning. In the second
step each position is tested in decreasing order of its slot beginning quality. For positions
satisfying certain selection criteria, a slot is established by detecting an appropriate slot end
point. In what follows, we describe both steps in more detail.

Letϕ be a query feature anddj a phoneme sequence of a document. First, abin is initialized
for each phoneme position in the document such thatbin[k] = 0 for k = 0, . . . , ldj − 1.
Subsequently, the bins are filled in such a way thatbin[k] contains the number of phonemes
that areidenticalto the corresponding query feature phoneme, ifk was a slot beginning, i.e.

bin[k] := |{x|0≤ x ≤ lϕ ∧ dj [k+ x] = ϕ[x]}|. (11)

Again, lϕ denotes the number of phonemes inϕ. The valuebin[k] reflects a trivial slot
beginning score for positionk, andbin[k] ≤ lϕ holds. It is evident that any substitution
error causesbin[k] to decrease. In the next step, insertion and deletion errors are taken into
account in the following way. For each positionk another scorebs[k] (beginning score) is
calculated by accumulating bins from a window aroundk. The beginning scores are defined
as

bs[k] :=
k+wϕ/2∑

i=k−wϕ/2
bin[i ] (12)

wϕ := 1+ 2 ·


0 lϕ < 5

1 5≤ lϕ < 10

2 lϕ ≥ 10,

(13)

wherewϕ denotes the window size, which we defined empirically as a function depending
on the feature length (13). The valuewϕ2 in (12) reflects the maximum number of insertion or
deletion errors taken into account. For example, if a slot starting at positionk contains one
insertion error,bin[k+ 1] should also contribute to the slot beginning scorebs[k]. In this
way,bs[k] contains an approximation of the number of common phonemes betweenϕ and
a slot starting at positionk.

In the second step, slots are established in a top-down manner. First, all positions within
dj are sorted in decreasing order of theirbs-values. Then, starting with the best position,
slots are established as long as theirbs-values are greater than a thresholdτ · lϕ (0≤ τ ≤
1). The threshold is a lower bound for the number of common phonemes between a query
feature and a valid slot. A good choice for the parameterτ is the ratio of correctly recognized
phonemes, which may be determined on a recognition test set. This ratio is calledpercent
correct(Lee 1989, p. 147). We usedτ = 0.5 in our experiments. To establish a slot, its end
is first detected by searching for matching phonemes in a window around the expected slot
end, which is given by the slot beginning and bylϕ . To avoid multiple overlapping slots,
the slot is only established if there is no overlap with previously established slots (for the
same query feature). If all criteria are satisfied, the slot is added to the slot setS(ϕ, dj ).
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Two types of errors may occur during slot detection. Amissdenotes a slot whereϕ is
spoken but the slot is not detected. Afalse alarmdenotes the detection of a slot whereϕ
was not spoken. Both types of errors may affect the retrieval effectiveness and there is a
trade-off between them. The goal is to minimize both the number of misses and the number
of false alarms.

Probability estimation. In this section we describe a technique which estimates an occur-
rence probability for a slot based on the comparison of phoneme sequences. In previous
work we experimented with probability estimation functions that either required training
utterances (Wechsler and Sch¨auble 1995) or were determined empirically (Sheridan et al.
1997). In the following we present an estimation method that incorporates phoneme con-
fusion statistics from the recognizer and makes the most of collection-wide information.

Let ϕ be a query feature and lets be a slot indj . We write

ϕ = 〈ϕ[0], . . . , ϕ[lϕ − 1]〉
s = 〈s[0], . . . , s[l − 1]〉 := 〈dj [b], . . . ,dj [b+ l − 1]〉.

The new probability estimation function first derives a string similarity between the slot
and the query feature. The basic structure of the similarity function is based on the dynamic
programming idea (Rabiner 1993, p. 223). We writesu for the substring of the firstu
phonemes ins. Similarly,ϕv denotes the firstv phonemes inϕ. The similarity function is
defined recursively as

sim(s1, ϕv) := t (ϕ[v] → s[0])

sim(su, ϕ1) := t (ϕ[0] → s[u])

sim(su, ϕv) :=

max


sim(su−1, ϕv−1)+ t (ϕ[v] → s[u])

sim(su−2, ϕv−1)+ t (ϕ[v] → s[u− 1]s[u])

sim(su−1, ϕv−2)+ t (ϕ[v − 1]ϕ[v] → s[u]).

The functiont( ) defineselementary similarities: t (ϕ[v]→ s[u]) denotes the similarity of
the phonemesϕ[v] ands[u], t (ϕ[v]→ s[u− 1]s[u]) denotes the similarity of the phoneme
ϕ[v] and the phoneme strings[u−1]s[u], andt (ϕ[v−1]ϕ[v]→ s[u]) denotes the similarity
of the phoneme stringϕ[v−1]ϕ[v] ands[u]. We estimate these elementary similarities based
onphoneme substitution, insertion and deletion probabilitiesas follows:

t (ϕ[v] → s[u]) = PSubvu := PSub(ϕ[v] → s[u])

t (ϕ[v] → s[u− 1]s[u]) := PIns(s[u− 1]) ∗ PSubvu

t (ϕ[v − 1]ϕ[v] → s[u]) := PDel(ϕ[v − 1]) ∗ PSubvu

PSub,PIns and PDel constitute probabilities modeling the phoneme recognition process.
PSub(p→ p′) (abbreviated PSubpp′ ) denotes the probability that the recognizer substitutes
a phonemep with p′. Similarly, PIns(p)(PDel(p)) denote the probability thatp is inserted
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Figure 2. Some slots and estimated probabilities to the query wordOlympic.

(deleted) during recognition. These probabilities can be derived from aconfusion matrix.
A confusion matrix can be calculated by running the phoneme recognizer over training
data and by aligning the phoneme output with the reference sequences. Based on the string
similarity function, the final occurrence probability of a slot is estimated as

P(ϕ, s) := sim(sls, ϕlϕ)

sim(ϕlϕ, ϕlϕ)
. (14)

Examples of occurrence probabilities for various slots are given in figure 2.

Collection-wide probability re-estimation.Running preliminary experiments with our
new slot detection and probability estimation method, we noticed that a considerable portion
of detected slots were false alarms. This is true particularly for short words. Figure 3 shows
all slot probabilities of slots detected in a German speech collection for various query
words. The slot probabilities for each word are displayed in decreasing order. For example,
9,000 slots are detected for the word (or subword)zehn, although its number of spoken

Figure 3. All slot probabilities in decreasing order for five German query words. The words were detected in a
German speech collection.
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occurrences in the collection is only 227, which means that 8,773 slots are false alarms.
Apart from that, as can be seen in figure 3, there is a tendency that probability estimates of
shorter words are higher. As a consequence for retrieval, the document weights (5) and the
RSVs (4) are corrupted by many false alarm slots with high probabilities (6). In fact, we
observed that the retrieval effectiveness dropped in this configuration.

To prevent this effect, it is necessary to estimate probabilities more accurately in order
to emphasize hit slots and to eliminate false alarms. We propose a method which we call
collection-wide probability re-estimation. The idea is to collect all slot probabilities detected
for a single query feature in theentirecollection (collection-wide), as illustrated in figure 3.
Then, we select the topN slots and discard the rest, assuming that the rest are false alarms.
In figure 3 this corresponds to a vertical line that acts as a threshold at positionx= N. In
other words, we focus on those slots that are most similar to the query feature. Subsequently,
the probabilities of the topN slots are re-estimated as

P′(ϕ, s) :=
{

P(ϕ,s)−PN (ϕ)

1−PN (ϕ)
P(ϕ, s) ≥ PN(ϕ)

0 else,
(15)

wherePN(ϕ) denotes theN-th best probability for a featureϕ from the string similarity
based estimation (Section 2.2).

Note that this threshold is feature specific and thus more accurate compared to e.g. a
constant threshold. In figure 3, a constant threshold corresponds to a horizontal line at a
certain threshold probability. However, as can be seen easily, a constant threshold would
tend to prefer shorter words from longer words. This effect would be undesired because
longer words can be detected more reliably due to a larger phoneme context.

Feature length weighting. For the most part, indexing features can be detected reliably in
text documents, be it short (e.g. “dog”) or longer (e.g. “dependability”). This is not true for
spoken documents. Longer words or phrases provide more information for the detection and
recognition process and thus can be detected more reliably. Similar statements have been
made by other research groups (Brown et al. 1996). This leads to the idea of incorporating
the length of a particular indexing feature into the weighting and retrieval function. We
propose a slightly extended definition of the query weights (7) as

b′i := bi ∗ (lϕi )
β, (16)

wherelϕi is the number of phonemes of the query feature andβ is a tuning parameter. We
will evaluate the effect of feature length weighting in Section 4.

3. Test settings

We have experimented on the methods described above using the test collection provided
for the purposes of the Spoken Document Retrieval Track of the TREC-6 conference. The
collection consists of 1451 documents from the 1996 Broadcast News Corpus (LDC 1996)
representing approximately 50 hours of recorded material. A document contains 276 words
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on average. More details about the collection can be found in (Voorhees et al. 1998). We
used three differentversionsof the same collection, namely

– PRT:phoneme-levelrecognitiontranscripts generated by our own phoneme recognizer,
– SRT: word-levelspeechrecognitiontranscripts, provided by IBM’s word recognition

system, and
– LTT: manually enteredlexicaltext transcripts, provided by NIST.

The SRT and LTT versions are both word-level transcripts. In order to evaluate our develop-
ments also on these versions, we translated these transcripts into phoneme sequences. For
this purpose we adapted the Carnegie Mellon Pronouncing Dictionary (CMU 1995) to our
phoneme set. Words not contained in this dictionary were transcribed using a rule-based
text-to-phoneme converter (Wasser 1985). Thus, the final SRT and LTTphoneme-leveltran-
scripts can be interpreted as a collection withlow (SRT) andno(LTT) phoneme corruption,
respectively.

To come up with the PRT collection version, we built asimplespeaker-independent
phoneme recognizer based on Hidden Markov Models (Rabiner 1993) using the HTK
Toolkit (Young et al. 1993). We trained acoustic models for a set of 40 monophones using
the TIMIT speech corpus (Garofolo et al. 1990). Further, we built a set of context-dependent
biphone models and trained this set on the SDR TREC-6 training collection (another 50
hours). For recognition, we used a stochastic phonebigram language model to avoid the
output of unlikely phone sequences. The recognized phone sequences were further processed
by clustering some of the acoustically most similar monophones into 30 broader classes,
which we callphonemes. More details about our phoneme recognizer can be found in
Mateev et al. (1998).

We evaluated the error rate of our phoneme recognizer on a 7.5 hour subset of the training
collection and found an error rate of 54.72%. This rather poor recognition quality indicates
that our PRT collection version consists of highly corrupted data and thus serves us as a
suitable base for the evaluation of error-tolerant methods.

The query set consists of 49 topics. Each topic is expressed by 12 words on average (in-
cluding stop words). The topics were processed by first discarding all stop words. Remaining
words were then transcribed into individual phoneme sequences using the pronunciation
dictionary or the rule-based text-to-phoneme converter described above. Additionally, a
phrase feature was added for each pair of subsequent non-stop words by concatenating the
phoneme sequences of the participant words.

The topics contain a considerable number of rare words such as geographical
names (“Wilmington”, “Israeli”), proper names (“Ridge”, “Goldfinger”) or other terms
(“Unabomber”, “Valujet”). Such words are crucial for retrieval, because they act as good
discriminators between relevant and non-relevant documents.

The retrieval problem investigated here (and in the TREC-6 SDR track) isknown item
search. This kind of retrieval task simulates a user seeking a particular, partially-remembered
document in the collection. We employ the same evaluation measures as used in the TREC-6
SDR track, namely
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Figure 4. Cumulative percentage of topics that retrieve a known item by given rank; baseline method on PRT,
SRT and LTT transcripts.

– mean reciprocal rank, which is (rank of the known item)−1 averaged over all topics where
the known item was found at all,

– %retr@1, the percentage of topics for which the known item was top ranked,
– cumulative percentage of topics that retrieve the known item by given rank (a 2D graph).

This enables the comparison of our results to submitted SDR runs of TREC-6. In the next
section we present and discuss results achieved in a number of different experiments.

4. Results and discussion

In a first experiment we evaluated the retrieval effectiveness of our baseline retrieval method
(Section 2.1). In figure 4 we present the results for the three different collection versions
described in Section 3. The curve labelled with PRT reflects the high corruption of our
phoneme recognizer output compared to the error-free collection (LTT). Table 1 shows
the mean reciprocal rank and the percentage of retrieved documents at rank one for our
baseline method. As expected, the baseline retrieval method does not perform well on
highly corrupted phoneme output. This is due to the restrictive slot detection method, which
is based onexactphoneme sequence matching (Section 2.1). However, the results obtained
on SRT and LTT justify that our baseline weighting and retrieval functions. (4)–(10) are
appropriate for documents with few or no recognition errors. Compared to the overall best
runs submitted to TREC-6, we observed an increase in terms of mean reciprocal rank of
4.3% for SRT and 4.5% for LTT respectively.

In a second experiment we determined the retrieval effectiveness for our new slot detec-
tion and probability estimation methods (Sections 2.2–2.2). Table 2 shows the results of
the comparison against the baseline method for the collections PRT and SRT. The param-
eterN denotes the number of selected slots for collection-wide probability re-estimation
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(Section 2.2). All other parameters were left unchanged. The results show that our methods
improve retrieval effectiveness by up to 63% in the case of highly corrupted data (PRT). An
improvement was somehow expected since the new techniques are based onerror-tolerant
slot detection. However, the degree of the improvement is still noteworthy if considering
that error-tolerant slot detection also detects many false alarms.

Varying the parameterN in Eq. (15), we allow more or less slots to be considered. This is
equivalent with trading off recall and precision in the context of feature detection. Increasing
N improves detection recall but lowers precision. As a consequence, more and more false
alarms contribute to the RSVs by increased expected feature frequencies in non-relevant
documents. This causes the retrieval effectiveness to drop. Moreover, our initial probability
estimation method (Section 2.2) produces rather high probabilities even for false alarm
slots, as can be seen e.g. for the word “zehn” in figure 3. This is especially true for short
words, since there is less phoneme context that can be used for the estimation.

On the SRT collection we observe a decrease in retrieval effectiveness, which is however
relatively small in the case of smallN. Apparently the negative effect of additionally con-
sidered false alarms is stronger than the positive effect that word recognition errors, which
are present in the SRT collection, may be compensated with phonemic matching.

In the third experiment we investigate the influence of feature length weighting
(Section 2.2) on retrieval effectiveness. The length factor (lϕi )

β in Eq. (7) has the role
to put more weight on longer features, since they are detected more reliably due to a larger
phoneme context. Table 3 shows results when comparing this extension to our baseline
method for some value ofβ. A small improvement was observed only forβ = 0.6 on PRT.
In all other cases we found a slight decrease in terms of mean reciprocal rank. However,
this method was originally motivated by experiments performed on aGermanradio news
collection, where we observed consistent improvements (Table 4). The explanation could
lay in the fact that both the mean and the variation of the word length distribution are smaller
for English compared to German.

Table 1. Retrieval effectiveness using baseline method on PRT, SRT and LTT.

Collection PRT SRT LTT

Mean reciprocal rank 0.2617 0.7545 0.8797

%retr@1 18.36% 69.38% 85.71%

Table 2. Mean reciprocal rank for new slot detection, probability estimation and re-estimation.

Method N PRT SRT

Baseline – 0.2617 0.7545

New technique 100 0.4268 (+63%) 0.6940 (−8%)

200 0.3985 (+52%) 0.6623 (−12%)

400 0.3816 (+46%) 0.6562 (−13%)

800 0.3742 (+43%) 0.6059 (−20%)

No re-estimation ∞ 0.2025 (−23%) 0.3106 (−59%)
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Table 3. Effect of feature length weighting for English documents in terms of mean reciprocal rank.

Method β PRT SRT

Baseline 0 0.2617 0.7545

Feature length 0.6 0.2663 (+1.7%) 0.7500 (−0.6%)

Weighting 0.8 0.2531 (−3.3%) 0.7500 (−0.6%)

1 0.2530 (−3.3%) 0.7331 (−2.8%)

1.2 0.2547 (−2.7%) 0.7298 (−3.3%)

1.4 0.2424 (−7.4%) 0.7283 (−3.5%)

Table 4. Effect of feature length weighting on a German collection in terms of mean reciprocal rank.

Method β Speech

Baseline 0 0.4068

Feature 0.4 0.4308 (+5.9%)

Length 0.6 0.4438 (+9.1%)

Weighting 0.8 0.4421 (+8.7%)

1.0 0.4276 (+5.1%)

1.2 0.4114 (+1.1%)

Table 5. Effectiveness of new techniques versus baseline method on PRT collection.

Method Mean reciprocal rank %retr@1

Baseline 0.2617 18.36%

New techniques 0.4268 38.78%

Gain +63% +111.22%

Figure 5. Effectiveness of new techniques versus baseline method on PRT collection.
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Our goal was to improve the retrieval effectiveness for a retrieval method that operates on
phoneme recognition output, since this approach has the main advantage of open-vocabulary
querying. Thus, we finally compare the baseline method with the results achieved with the
new techniques (without feature length weighting) in figure 5 and Table 5. Since the costs to
inspect spoken documents are higher compared to text documents, we focus on the retrieval
precision. Table 5 shows that the number of documents retrieved at rank one (%retr@1)
increases by over 110% when applying our new retrieval method. This indicates that the
new retrieval method is suitable for high-precision retrieval on corrupted documents.

5. Conclusions

In this paper we have presented new methods foropen-vocabularyindexing and retrieval
in spoken documents. Our techniques are based on spotting query features in phoneme
sequences produced by a phoneme recognizer. Extensions include (1) a new slot detection
method for highly corrupted phoneme sequences, (2) a probability estimation technique,
(3) collection-wide probability re-estimation, and (4) feature length weighting.

Experiments on the TREC SDR Track collection show that the retrieval effectiveness can
be improved considerably in the case of highly corrupted recognition output (55% phoneme
error rate). This result has been verified with similar experiments on a German collection,
where the method showed to be significantly more effective than phoneme-based N-gram
retrieval (Wechsler 1998). Further, a simple variant of the method was shown to yield
excellent results on phoneme-transcribed text with little or no corruption. Incorporating the
length of query features into the weighting scheme seems to be beneficial for documents
spoken in German, though not in English.

A particular issue is the robustness of the new method with respect to morphological
variants of query features. Note that a morphological variant is easily detectable if the
phonemic transcription of the query feature is a subsequence of the variant, which is true
e.g. for the query feature “conflate” and the variant “conflating”. But shorter variants may
also be detected as long as they are phonemically similar compared to the query feature.
For example, “phonemes” may also yield slots where “phoneme” was spoken, because
the error-tolerant slot detection may interpret the missing “s” as a phoneme deletion or
substitution error.

We believe this work is a significant contribution to the retrieval of documents that are
spoken in languages for which little training data is available. Our method is not only
applicable to spoken documents but also to corrupted OCR output obtained from scanned
text images. In the case of spoken documents, these techniques can be viewed as a valuable
add-on to the out-of-vocabulary problem in word-recognition based retrieval.
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